International Workshop on Teaching and Learning of Information Retrieval

Experiences on a Practical Course of Web
Information Retrieval: Developing a Search
Engine

Fidel Cacheda, Diego Fernandez, Rafael Lopez
Department of Information and Communication Technologies
University of A Corufia
Facultad de Informatica, Campus de Elvifia s/n
15071 A Corufia, Spain
{fidel, dfernandezi, rlopezga}@udc.es

A Web Information Retrieval course is quite appealing to Computer Science students and is quite
challenging from the teacher’s perspective, due to the limited knowledge of IR and Web IR of the
students. In this paper we present our experience teaching a mainly practical Web IR course in order to
exploit the programming skills of the common Computer Science student. The student is required to
develop its own search engine and his evaluation is based on the features of the search engine
implemented.

Keywords: Information Retrieval, Web Information Retrieval, teaching, education, practical course, search engine development.

1. INTRODUCTION

Web Information Retrieval (IR) is a subject that results quite appealing to Computer Science students due to its
reflection in well-known real life systems, such as Google® or Yahoo!?, and their interest to understand how these
systems work. At the same time, teaching Web IR to generic Computer Science students is challenging due to their
lack of knowledge in IR (and specifically in Web IR), or even worse, due to their partial knowledge of some aspects
of Web IR (e.g. PageRank).

Starting on the point that theory and practice are fundamental for the student, one interesting aspect of a Web IR
course is the balance between theory and practice, specially when considering generic Computer Science
students.

The theory is fundamental to understand the structure of a search engine and the main issues to be solved in each
component. On the other side, the students can easily get lost in the specific details and lose the global picture of
the system, and their lack of knowledge of an IR system can make them over-simplify some of the problems
discussed.

The practice is important to clarify and reinforce the problems analysed from the theoretical point of view. Systems
like Lemur [3], Lucene [4] or Terrier [5] are very useful tools to test and study typical IR algorithms, but require a
previous learning and could give the student only a partial view of a search engine architecture.

In this article, we would like to present our experience teaching a Web IR course to generic Computer Science
Master students. This course was mainly practical and the objective was that the students developed their own
search engine. In fact, the course was evaluated taking into account the characteristics of the search engine
developed by the student.

The main motivation to teach this course mainly with practice was to exploit the programming skills of the students.
Although the students may not have any previous knowledge about the basic IR models and issues, they can
easily develop simple programs. In fact, the main components of a search engine (crawler, indexer and searcher)
are quite simple programs that, with the appropriate guidance, could be easily developed by the students.

The remaining of the paper is organised as follows. Next we present the academic details of the course described
here. Section 3 presents the course structure and details its contents. In Section 4 we briefly present the students’
results and finally we conclude.

2. COURSE ACADEMIC DETAILS

1 http://www.google.com/
2 http://lwww.yahoo.com/

International Workshop on Teaching and Learning of Information Retrieval
The course described in this article is named “Internet Information Retrieval” and corresponds to a second year
subject in a Master degree in Computer Science at the University of A Corufia (Spain). It is an optional subject with
a workload of 4 ECTS (European Credit Transfer and Accumulation System), equivalent to 40 class hours (25
theoretical + 15 practical) throughout 5 weeks in the beginning of the second term.
The first edition of this course was in 2007 and counted with 8 students, all of them graduate students. In the same
Master there is a first year optional subject nhamed “Information Retrieval Models and Techniques”, taught by
professor Alvaro Barreiro, that is focused mainly in the basic models and techniques for IR. Three of the students
had attended this course.
The Master in Computer Science at the University of A Coruiia was a leading experience in order to adapt its
subjects to the EHEA (European Higher Education Area), with a special focus in the work developed by the
student.
Therefore, the main objective of our course was to lead the student to a clear understanding of how a search
engine works and we considered that the best option would be that the student developed his own search engine.

3. COURSE STRUCTURE AND CONTENT

In this section we present the global structure of the course and the programming tasks that lead to the
development of a simple search engine by the student. The implementation of the search engine is divided into
three parts (crawler, indexer and searcher), where each one is associated with one module of the course (modules
2, 3 and 4, respectively). The programming tasks are recommended to be done in Java, as it is the programming
language more used by the students, although it is not mandatory.

The course is divided in five weeks. The first week is dedicated to the introductory module and then, the next three
weeks a new module is studied and a new programming task is assigned. The final week is used to solve problems
appeared in the different programming tasks, do some improvements and, in general, integrate the components.

3.1 Syllabus
The syllabus of the course is the following:
— Module 1: Introduction to the search techniques
O Introduction
O World Wide Web
O Web search engines
O Architecture of a Web search engine
— Module 2: Crawling techniques
O Crawling algorithms
O Robot exclusion standard
O Robot meta-tags
— Module 3: Indexing techniques
O IR models
O Web indexing
O Distributed indexes
— Module 4: Ranking algorithms
O Content-based ranking
O Link-based ranking

The main references used in this course are the well-known [1], [2] and [6].

3.2 Crawler

The first module is a general introduction to the IR and Web IR and its main goal is to present a global architecture

of a search engine to the student. In the next module, we describe the operation of a typical crawler and the

politeness rules that crawlers must follow.

The programming task for this module is to develop a simple crawler that must have the capacity to crawl a small

web site. In detail, the characteristics of the crawler are the following:

- Crawl our department’s web site®, composed of approximately 3,500 web pages.

- Implement a deep first algorithm.

- Store the web pages downloaded in a repository. The student must define the appropriate data structure to
store the web pages in order to the later indexing (e.g. URL of the page, id, title).

- Use a single thread, to avoid the saturation of the web server.

- Implement the robot exclusion standard.

- It is recommended to avoid downloading non-HTML documents (e.g. jpg, gif, pdf, doc) to speed up the
crawling process.

w

http://www.tic.udc.es/

International Workshop on Teaching and Learning of Information Retrieval

The main problem when developing a crawler is to use the appropriate data structures in order to obtain a good

performance and facilitate the programming. This is the main reason to introduce to the students some Java

classes (and tips) that would help them:

- To work with the HTTP protocol, the programming class HttpURLConnection is recommended as it provides
methods to access the main fields of the HTTP header.

- The main data structures of a crawler are the list of URLs to visit and the list of URLs visited. The class
LinkedHashSet is recommended as it provides a good performance and keeps the insertion ordering of the
URLs.

- In order to implement a simple parser of a Web page (to extract new URLs), we recommend the
StringTokenizer class or the basic parsing methods of the String class.

The resulted crawler should be able to download and store the web site assigned in a few minutes (approximately,
3 minutes) from the department laboratories. The student will need only 15MB of disk space to store all the web
pages downloaded in his repository (the common disk limit for students would be 500MB).

3.3 Indexer

The third module introduces the basic IR models (boolean, probabilistic and vectorial), the special characteristics of

the Web indexing (e.g. word definition, HTML structural information, hyperlinks) and the basic index structure

(vocabulary and inverted file).

The programming task for this module is the development of a simple indexer that will create the index for all the

web pages previously stored in the repository. In detail, the main features of the indexer are the following:

- Divide the index data structure in two parts: the list of documents indexed and the index itself.

- The list of documents will store the basic information of each document (e.g. URL, id, title).

- The index will store, for each term, the list of documents where it appears (vocabulary and inverted lists).

- The whole index data structure will be stored into disk to be later used by the searcher.

- It is recommended to prepare an initial version of the index following the boolean model, and then, an
extended version following the vectorial model. The different information required by each model is
emphasized to the student.

As in the previous case, some suggestions are provided to the student in order to develop a, more or less, simple

and efficient index:

- To store the list of documents any list can be used, as the access is done basically by document identifier.

- To store the index, it is recommended a HashMap because it will provide a quick access to the terms.

- As the number and size of the documents indexed is reasonably small, the whole indexing process can be
done easily in main memory.

- To store the index data structure into disk, the Java serialization is recommended, as the disk space is not the
main issue.

The resulted indexer should be able to index all documents stored in the repository in a few minutes
(approximately, 5 minutes). The index will require about 5MB of disk space to be stored.

3.4 Searcher

The forth and last module presents to the student the main ranking algorithms, divided in content-based and link-
based (e.g. HITS and PageRank) ranking algorithms. Finally, to complete the search engine, the programming task
associated with this module is the development of a searcher that will use the index created previously.

In detail, the characteristics of the searcher are the following:

Initially, a simple command line interface can be provided, where the user will introduce the search terms.

The searcher must return a list of results, and for each of them, will provide its title and URL.

Depending on the model used in the index (boolean or vectorial), the ranking should be done accordingly.
Optionally, a web interface could also be provided.

In this case, no new data structures are required so there is no need to provide extra information to the students.

4. STUDENTS’ RESULTS

Based on our (short) experience from the first edition of this course, we would describe briefly the results obtained
by the students.

From the eight students registered for this course, seven were able to develop a working search engine and get a
successful mark for the course. The remaining student decided to not start the programming assignment due to
lack of time. From the search engines presented six were developed in Java while one in Python (in this case,
some performance problems appeared in the indexer). In Table 1 we present a summary of the main
characteristics of the search engines developed by the students.

TABLE 1: Features of the search engines developed by the students

Crawler Indexer Searcher

International Workshop on Teaching and Learning of Information Retrieval
Boolean Vectorial Command line Web interface

Students 7 4 3 4 3

5. CONCLUSIONS

Although our university regularly runs surveys through the students for each course, there is no official information
available at the moment that we could provide. So, the conclusions stated in this section are based on our own
experience and the comments received from the students in the classes, by e-mail or in the forum of the course.
The main advantage of the practical format of this course was the motivation obtained from the students to develop
their own search engine. The students can get easily a minimal version of a search engine working and then, they
can incrementally add new improvements to their system. For example, the boolean model (quite straightforward to
implement) produces naive results and so, the students try to implement the vectorial model in order to improve
their ranking. Moreover, the students can understand more clearly the main techniques behind an IR system (e.g.
the vectorial model), because they have to implement them and not only learn about them.

On the other side, some problems were detected during this course:

- In general, the students were not able to cope with the programming tasks weekly due to the concentration of
the course in only 5 weeks. Instead, the students worked on the search engine during the whole term and the
forum of the course turned out to be a very useful tool to solve their common questions and doubts.

- For a general Computer Science student most of the IR concepts are new and requires a higher guidance than
expected for the development of the search engine.

6. FUTURE WORKS

In general we consider this experience as very positive and next year we will carry on with the same model for our
course with some improvements. For example, to improve the guidance of the students, we would like to introduce
a one hour class of “live” programming, for each programming task. In these live programming classes, we (the
teachers) will implement a very basic version of each subsystem (crawler, indexer and searcher) and solve all the
guestions that may arise during the class. The resulting code will be provided to the students as a basic starting
point.

In the next editions we intend to use some questionnaires to get some feedback from the students about the
different aspects of the course (programming tasks, lectures, etc.).

REFERENCES

[1] R. Baeza-Yates, B. Ribeiro-Neto (2002) Modern Information Retrieval, Addison Wesley.

[2] W. Frakes, R. Baeza-Yates (1992) Information Retrieval: Data Structures and Algorithms, Prentice-Hall.

[3] The Lemur toolkit for language modeling and information retrieval. http://www.lemurproject.org/.

[4] Apache Lucene. http://lucene.apache.org/.

[5] I. Ounis, C. Lioma, C. Macdonald, V. Plachouras (2007) Research Directions in Terrier: a Search Engine for
Advanced Retrieval on the Web, CEPIS Upgrade Journal 8(1), Next Generation Web Search.

[6] I.H. Witten, A. Moffat, T.C. Bell (1999) Managing Gigabytes, Morgan Kaufmann.

