
Analysing the Effectiveness of Crawlers on the
Client-Side Hidden Web

Vı́ctor M. Prieto, Manuel Álvarez, Rafael López-Garcı́a and Fidel Cacheda

Abstract The main goal of this study is to present a scale that classifies crawling
systems according to their effectiveness in traversing the “client-side” Hidden Web.
To that end, we accomplish several tasks. First, we perform a thorough analysis of
the different client-side technologies and the main features of the Web 2.0 pages in
order to determine the initial levels of the aforementioned scale. Second, we submit
a Web site whose purpose is to check what crawlers are capable of dealing with
those technologies and features. Third, we propose several methods to evaluate the
performance of the crawlers in the Web site and to classify them according to the
levels of the scale. Fourth, we show the results of applying those methods to some
OpenSource and commercial crawlers, as well as to the robots of the main Web
search engines.

1 Introduction

The World Wide Web (WWW) is currently the biggest information repository ever
built. There are huge quantities of information that is publicly accessible, but as
important as the information itself is being able to manage it to find, retrieve and
gather the most relevant data according to users’ needs in every moment.

The programs that process the Web in order to achieve that goal are called
crawlers. A crawler traverses the Web following the URLs it discovers in a cer-
tain order and analyses the content of each document to obtain new URLs that will
be processed later.

From their origins, crawling systems have had to face a lot of difficulties when
they access human-oriented Web sites because some technologies are very hard to
analyse (navigation through pop-up menus, different data layers that hide out or

Department of Information and Communication Technologies, University of A Coruña, Cam-
pus de Elviña s/n. 15071 A Coruña, Spain, e-mail: {victor.prieto, manuel.alvarez, rafael.lopez,
fidel.cacheda}@udc.es

1



2 Vı́ctor M. Prieto, Manuel Álvarez, Rafael López-Garcı́a and Fidel Cacheda

appear depending on users’ actions, redirection techniques, etc.). The pages that can
only be accessed through these technologies constitute what we call Hidden Web [3]
and, particularly, the set of pages that are “hidden” behind client-side technologies
are called the “client-side Hidden Web”.

The objective of this paper is to present a scale for classifying crawlers according
to their treatment of the client-side Hidden Web. To that end, we have accomplished
some tasks. First, we have analysed the most important client-side technologies,
such as JavaScript, VBScript, AJAX, and Flash, as well as some techniques that
are often used for illicit purposes, like Redirection Spam [4] and Cloacking [16].
Once those technologies have been analysed, we have enumerated the difficulties
that crawlers can find during their traversal. We have also developed a Web site
that generates links dynamically and in accordance with the enumerated difficulties
in order to know how existing crawlers behave towards them. For this task, we
took into account the crawlers of the main Web search engines, as well as for some
OpenSource crawlers [6] [9] and some others with a commercial licence. Then, we
have discussed some methods to assess the effectiveness of the crawlers, allowing
us to choose the appropriate levels in the scale for them.

The structure of this article is as follows. Section 2 discusses the related works.
Section 3 introduces the client-side technologies and how they are used to build
dynamic Web sites and defines the scale proposed for classifying crawling sys-
tems according to their effectiveness in traversing the client-side Hidden Web. Sec-
tion 4 shows the experimental results performed with open-source and commercial
crawlers. Finally, in Sections 5 and 6 we comment the conclusions we have reached
and some possible future works.

2 Related Work

There are many studies about the size of the Web and the characterization of its
content. However, there are not so many studies about classifying Web pages taking
into account the difficulty for crawlers to process their content. According to the
data submitted in W3techs1 and BuiltWith2 currently the 90% of the Web pages use
JavaScript. In 2006, M. Weideman y F. Schwenke [15] published a study analysing
the importance of JavaScript in the visibility of a Web site, concluding that most of
the crawlers do not deal with it appropriately.

From the point of view of crawling systems, there are many works oriented to
create programs that are capable of traversing the Hidden Web [3]. Server-side Hid-
den Web crawlers deal with a large quantity of Web sites whose content is accessed
by means of forms. This kind of content is copious and has excellent quality. There
are some researches that tackle the challenges established by the server-side Hidden
Web. We highlight HiWE [11] because it is one of the pioneer systems. Google [7]

1 http://w3techs.com/
2 http://builtwith.com/



Analysing the Effectiveness of Crawlers on the Client-Side Hidden Web 3

also submitted the techniques that they use to access information through forms.
Álvarez et al. show DeepBot [2], a prototype of hidden-web crawler able to access
hidden content, identifying automatically the web forms and learning to execute
queries on them.

Regarding the client-side Hidden Web, there are less studies. From of our know-
ledge, this is because the crawlers of major search engines have agreements with
companies to access data from their servers. However, they only have agreements
with major companies in each sector, and a normal crawler has no such agreements.

However, there have been several studies that analyze the issue. Álvarez et al. [1]
propose the usage of mini-browsers to execute the client-side technologies and so,
have access to the hidden content. In 2008, Mesbah et al. show a study [8] about the
usage of AJAX on the Web, and as can be processed to have access to the data.

On the other hand, as client-side technologies can be used to “deceive” crawling
systems, there are some works about detection of what is known as Web Spam
(Cloacking [16] [18] [17] [5] or Redirection Spam [4] [5]).

Nevertheless, there is not any scale that allows researchers to classify the effec-
tiveness of the crawling systems according to their level of treatment of client-side
Hidden Web technologies.

3 The Scale for Web Crawlers

The client-side technologies are normally used to improve the users’ experience,
generating content and links dynamically according to users’ actions. Among the
most used are: JavaScript; AJAX; Flash;Applet and VBScript. In order to create the
scale, we have analysed how designers use the aforementioned technologies to build
dynamic sites. The following features have been identified:

• Text links, which constitute the lowest level of the scale.
• Simple navigations, generated with JavaScript, VBScript or ActionScript. This

includes links that are generated by means of “document.write()” or similar func-
tions, which allows designers to add new links to the HTML code dynamically.

• Navigations generated with an Applet. We divide them in two types: those which
are generated from a URL that is passed to the Applet as an argument and those
whose URL is created as a string into the compiled code.

• Navigations generated by means of AJAX.
• Pop-up menus, generated by a script code that is associated to any event.
• Navigations generated with Flash. There are two kinds: those which receive the

URL as an argument from the HTML code and those which define it inside the
ActionScript code.

• Links that are defined as strings in .java files, .class files or any other kinds of
text and binary files.

• Navigations generated in script functions. The script can be embedded inside the
HTML or it can be located inside an external file.



4 Vı́ctor M. Prieto, Manuel Álvarez, Rafael López-Garcı́a and Fidel Cacheda

• Navigations generated by means of several kinds of redirections: a) those spec-
ified in the <meta> tag; b) generated by the onLoad event of the <body> tag;
c)generated by a script when an event in other page (e.g.: the onClick event) is
fired; d) embedded in script blocks; e) executed in an applet f) Fash redirections.

In addition, the navigations that are generated with any of the identified methods
can create absolute or relative URL addresses. For the addresses that are built with
scripting languages, it is possible to recognize the following construction methods:
a) a static string inside the script; b) a string concatenation; c) execution of a function
that builds the URL in several steps.

On the other hand, the different methods we enumerated before can be combined.
For example, some Web sites build pop-up menus dynamically, by means of “doc-
ument.write()” functions. The number of possibilities is unapproachable. Hence,
this study only takes into account a reduced but significative subset. It consists of
70 “scenarios” (see “Description” and “Tested Scenarios” columns in Figure 1) that
represent the basic types from which the rest of the cases could be obtained by means
of combinations. The number of scenarios taken into account could be higher, but
it would not get more information about the use of client-side technologies in the
Web or about the methods that crawlers use to discover links. For instance, it is not
necessary to check the combination of menus and “document.write()” because we
can deduce the result from the two base cases that were included separately.

Starting from the aforementioned 70 scenarios, we proposed an initial grouping
based on the technologies, the methods for building strings, the location of the code
and if the URLs are absolute or relative. This way, we have grouped the scenarios
that presented a similar difficulty for crawlers and we have also sorted them by
complexity. Figure 1 shows the 8 step scale. The steps represent the capacity to treat
the client-side Hidden Web from lower to higher level of complexity.

Fig. 1 Link classification by difficulty



Analysing the Effectiveness of Crawlers on the Client-Side Hidden Web 5

Once the scale has been defined, in order to classify the different crawling sys-
tems according to the level of complexity of the “links” they process, we propose
the following evaluation methods:

• Simple Average: it treats all the scenarios in the same way, without taking into
account their difficulty. It shows the crawlers which treat the highest number of
scenarios, so they pay more attention to the Hidden Web in general.

• Maximum Level: this model sorts crawlers according to the highest level of dif-
ficulty they can process. A crawler obtains a score i if it has the capacity of pro-
cessing the scenarios of that level and the levels below. There are some crawlers
that process a certain level, but they cannot obtain pages from scenarios of lower
level. This could be due to some problems like the low PageRank of a Web page
and so on. However, this evaluation method assumes that if a crawler is capable
of dealing with a level i, it should be able to deal with lower ones.

• Weighted Average: each scenario is assigned a value between 0 and 1, which
depends on the number of crawlers that have been able to process it (0 if every
crawler has been able to deal with it). This method shows what crawlers can
obtain the highest number of difficult resources in the client-side Hidden Web, or
resources that most crawlers do not reach.

• Eight Levels: in this model each level has a value of one point. If a crawler
processes all the scenarios of one level it obtains that point. For every scenario
that the crawler processes successfully, it gets 1/n points, where n is the total
number of scenarios that were defined for that level.

4 Experimental Results

In order to check how crawling systems deal with the different scenarios, and for
ranking them using the scale defined, we created a web site for performing experi-
ments. The “jstestingsite”3 web site contains 70 links, one for each scenario defined
in the scale. We employed it to test the crawlers of the main Web search engines
(Google, Bing, Yahoo!, PicSearch and Gigablast) and other OpenSource and com-
mercial crawlers (Nutch [6], Heritrix [9], Pavuk [10], WebHTTrack, Teleport [12],
Web2Disk [14], WebCopierPro [13]).

4.1 Summary Results

The left side of Figure 2 shows the results obtained for OpenSource and commer-
cial crawlers. The crawler that achieves the best results is WebCopierPro, which
processed 57,14% of the levels, followed by Heritrix with 47,14% and Web2Disk
with 34,29%. Only a few get values beyond 25% in most of the levels. It is also

3 http://www.tic.udc.es/∼mad/resources/projects/jstestingsite/



6 Vı́ctor M. Prieto, Manuel Álvarez, Rafael López-Garcı́a and Fidel Cacheda

important to notice the poor results that they obtained for redirections, especially in
the case of WebCopierPro which was not able to deal with any of them, although
it gets results of 100% in harder levels. None of the crawlers reached the 100% in
redirections. This happens because none of them has been able to process pages
with redirections embedded in Applets or Flash, since these technologies were not
executed.

Fig. 2 Summary of results of OpenSource and Commercial crawlers (left side) and the crawlers of
the main search engines (right side)

The right side of Figure 2 contains the results obtained for the main Web search
engines. It does not show the results for Bing, Gigablast and PicSearch, since they
have not indexed the testing Web site. Only Google and Yahoo! have indexed it.
Google has processed 44.29% of the links. GoogleBot has processed 50% of many
of the proposed levels. The other half has not been processed because the crawler has
not analysed some external files. If it was the case, GoogleBot would achieve much
better results. The links that GoogleBot has not processed included technologies like
Flash, Applets and AJAX or files like .class and .java.

Regarding the types of links that in general were processed by the crawlers an-
alyzed, we found that only 42.52% of statics links were retrieved, 27.38% of links
generated by concatenation of strings and 15.18% for links that were generated by
functions. These results show that the crawlers try to discover new URLs by process-
ing the code as text, using regular expressions, instead of using scripting interpreters
and/or decompilers. So, they cannot extract those links which were generated by a
complex method.

4.2 Ranking the crawlers according to the Scale

Figure 3 shows the result of classifying the crawling systems according to the scale
and the assessment levels we had proposed.

We can see that WebCopier, Heritrix and Google get the best results in the Simple
Average method. For Maximum Level, Google places first since it processes level
8 links. It is followed by WebCopier (7 points) and Heritrix (6 points). As Google



Analysing the Effectiveness of Crawlers on the Client-Side Hidden Web 7

Fig. 3 Results according to the proposed scales

achieves the maximum level in this model but not in others, we can conclude that it
does not try some scenarios because of its internal policy. Once again, WebCopier,
Google and Heritrix have obtained the best results in the Weighted Average model.
Very similar results have been obtained in the Eight Levels method. This means
that the three top crawlers have dealt with a big quantity of levels in each group or
they have gone through links that were part of a group with few links, which makes
each link more valuable. We conclude that the best crawlers in both quantity and
quality are Google and WebCopier, followed by Heritrix, Nutch and Web2Disk. It
is important to highlight the results of GoogleBot. Although it is oriented to traverse
all the Web and it has a lot of performance and security requisites, it takes into
account a wide range of technologies.

5 Conclusions

This article proposes a scale that allows us to classify crawling systems according to
their effectiveness accessing the client-side Hidden Web. In order to classify the dif-
ferent crawling systems, we have created a Web site implementing all the difficulties
that we had included in the scale.

Analyzing the results we can make the following recommendations about creat-
ing a web page: use JavaScript, embed JavaScript code in HTML, avoid dynamic
creation of URLs and use HTTP or HTML code for the redirects.

The best crawlers are Google and WebCopier, followed by Heritrix, Nutch and
Web2Disk. We can say that most of the times they try to discover new URLs pro-
cessing the code as text, using regular expressions. This allows them to discover
a big amount of scenarios. In addition, the major crawlers have agreements with
companies in each sector, allowing them direct access to data. With these policies,
the crawlers can treat directly the data and save resources. However, only the ma-
jor search engines have these agreements. We conclude that in present, most of the
URLs which are located in the client-side technologies are not discovered.

6 Future Work

Among the studies that we propose as a continuation of this work, we have the
improvement of the assessment methods in order to take into account the frequency



8 Vı́ctor M. Prieto, Manuel Álvarez, Rafael López-Garcı́a and Fidel Cacheda

of use of each technology on the Web. This will allow us to know the volume of
information that is beyond the scope of the crawlers, since nowadays they do not
treat all the scenarios. We can use this information to know the convenience of
analysing the client-side Hidden Web. We also are interested in in studying how the
features (the topics, the number of visits, etc.) of a Web site can affect the crawling
process and the indexation of its pages.

7 Acknowledgments

This work was partly supported by the Spanish government, under projects TIN
2009-14203 and TIN 2010-09988-E.

References

1. M. Álvarez, A. Pan, J. Raposo, and Justo Hidalgo. Crawling Web Pages with Support for
Client-Side Dynamism, 2006

2. M. Álvarez, J. Raposo, A. Pan, F. Cacheda, F. Bellas, and V. Carneiro. Crawling the content
hidden behind web forms In Computational Science and Its Applications - ICCSA 2007, Vol.
4706 Lecture Notes in Computer Science, pages 322–333, 2007.

3. M. K. Bergman. The deep web: Surfacing hidden value, 2000.
4. K. Chellapilla and A. Maykov. A taxonomy of javascript redirection spam. In Workshop on

Adversarial information retrieval on the web, AIRWeb 2007, pages 81–88.
5. Z. Gyongyi and H. Garcia-Molina. Web spam taxonomy, 2005.
6. R. Khare and D. Cutting. Nutch: A flexible and scalable open-source web search engine.

Technical report, 2004.
7. J. Madhavan, D. Ko, L. Kot, V. Ganapathy, A. Rasmussen, and A. Halevy. Google’s deep web

crawl. Proc. VLDB Endow., 1:1241–1252, August 2008.
8. A. Mesbah, E. Bozdag, and A. van Deursen. Crawling ajax by inferring user interface state

changes. In Web Engineering, 2008. ICWE ’08., pages 122–134, 2008.
9. G. Mohr, M. Kimpton, M. Stack, and I. Ranitovic. Introduction to heritrix, an archival quality

web crawler. In 4th International Web Archiving Workshop (IWAW04), 2004.
10. Pavuk Web page. http://www.pavuk.org/, 2011.
11. S. Raghavan and H. Garcia-Molina. Crawling the hidden web. In Proceedings of the 27th In-

ternational Conference on Very Large Data Bases, VLDB ’01, pages 129–138, San Francisco,
CA, USA, 2001. Morgan Kaufmann Publishers Inc.

12. Teleport Web page. http://www.tenmax.com/teleport/pro/home.htm, 2011.
13. Web Copier Pro Web page. http://www.maximumsoft.com/products/wc pro/overview.html.
14. Web2Disk Web page. http://www.inspyder.com/products/Web2Disk/Default.aspx, 2011.
15. M. Weideman and F. Schwenke. The influence that JavaScript has on the visibility of a Website

to search engines - a pilot study. Information Research, 11(4), Jul 2006.
16. B. Wu and B. D. Davison. Cloaking and redirection: A preliminary study, 2005.
17. B. Wu and B. D. Davison. Identifying link farm spam pages. In Proceedings of the 14th

International World Wide Web Conference, pages 820–829. ACM Press, 2005.
18. B. Wu and B. D. Davison. Detecting semantic cloaking on the web. In Proceedings of the

15th International World Wide Web Conference, pages 819–828. ACM Press, 2006.


