A Technical Approach to Information Retrieval
Pedagogy

Rafael Lopez-Garcia, Fidel Cacheda

Department of Information and Communication Technologies. University
of A Corufia. Facultad de Informatica, Campus de Elvifia s/n. 15071 A Co-
rufia, Spain.

Abstract

Like in other subjects belonging to the Computing Science curricula, learn-
ing in Information Retrieval must be significant. In order to understand the
main concepts and procedures of this discipline, students and inexperi-
enced researchers must acquire some practical skills which often are dem-
onstrated by means of the transformation of a specification into a software
product. In order to reach those aims, this article presents a technical ap-
proach to Information Retrieval teaching that focuses on the links between
theoretical concepts and programming code. It also presents IR-
Components, a framework that could facilitate this purpose.

Introduction

Computing Science (CS) is a young discipline whose curricula have to be
constantly renewed and tend to be divided into different specializations
[1]. Information Retrieval (IR) is one of them and syllabi in IR are usually
disparate too. Duration can oscillate from a few sessions to months and
students with no previous knowledge of the subject or even of program-
ming can fulfil the admission criteria. Actually, as IR is a multi-

2 Rafael Lopez-Garcia, Fidel Cacheda

disciplinary science, approaches can be really heterogeneous, from holistic
[2] and philosophical [3] to detailed and technical [4].

Fortunately, experts in technical IR identify two components of IR sys-
tems: the indexer and the search engine. A third one, the crawler, is usually
added in Web environments. There are lots of common and interesting
concepts and techniques related to those components [5, 6, 7] (e.g.: MIME
[8] types, robots exclusion standard [9], stop words, stemming [10],
weighting models [11] and so on). Teachers have to decide how many and
which concepts are going to be part of their syllabi.

Whatever the characteristics of the subject, there is a significant need for
methodologies and teaching materials in order to improve students’ under-
standing. Most of the classic systems, like Apache Lucene [12] and Terrier
[13], are too complex to be understood or changed by inexperienced stu-
dents. There are some simpler and pluggable initiatives, like IR-Base [14],
but the number of systems fulfilling these features is not high.

The first goal of this article is to present some methods which help tech-
nical teachers to solve some of their problems and to facilitate several
tasks like, for example, presenting the main problems of IR to their stu-
dents, guiding them to the solution of these problems, establishing their
coursework and evaluating their theoretical and technical comprehension.

Another aim of this article is to present the IR-Components system as a
candidate to help teachers to solve the proposed problems and to fulfil the
aforementioned needs. The system is specially oriented to this purpose,
since it is simple and its design pays special attention to modularity.

Related Work

Among the multiple disciplines involved in IR, Library and Information
Science (LIS) has become one of the most important since 1951, when
Mooers introduced the term in that context [15]. Nevertheless, IR makes
use of computer-related technology, and that was the reason for IEEE &
ACM to include it in the CS curricula [1]. Some authors like Zhu and Tang
[16] presented their own proposals for degree and post-degree levels too.
Fernandez-Luna et al., who have recently published a literature review
of pedagogical methods for teaching and learning IR [17], have identified
three main educational goals about IR in the CS curricula and literature.
The first one, understanding fundamental aspects of IR, has already been
developed by some authors, like Henrich and Morgenroth [18] and
Efthimiadis and Hendry [19, 20]. Other authors go into higher detail and
teach advanced techniques, like Herrera-Viedma et al. in fuzzy systems

A Technical Approach to Information Retrieval Pedagogy 3

[21] and Goharian et al. [22] in data mining, but those concepts are out of
the scope of this article.

The second one, training in search strategies, is more typical of the LIS
curricula. In this kind of syllabi, teachers usually show students how to
choose among different search engines and how to exploit their features,
but they never force them to program their own solutions and hardly ever
teach technical details (although there are exceptions like Johnson [23]).

Besides, Airio et al. presented a tool for measuring the features of IR
systems [24] in order to improve students’ search skills.

Finally, the last aim Fernandez-Luna et al. found, to acquire skills to de-
velop new IR methods using software modules, has also been researched
by several authors. Efthimiadis and Freier proposed an approach in which
students do not have to program [25]. Jinguji et al. designed a customiza-
ble answering system [26], but it is not exactly a document retriever and its
complexity makes it oriented to advanced courses. De Campos et al. pre-
sented an object-oriented framework for the research and teaching of IR
[27], but this system is oriented to Probabilistic Graphical Models (PGM)
and structured document formats like XML. Chau et al. submitted another
initiative [28], but their proposal for the coursework is to give two com-
plete applications to their students, Al Spider and Al Indexer, and make
them develop the search engine starting from scratch to get a medium/large
scale project. IR-Components, on the contrary, forces students to under-
stand each of the applications by means of completing a skeleton, pro-
gramming only the most illustrative parts and focusing on the essential
concepts and techniques of IR chosen by the teacher.

The main alternatives to IR-Components seem to be IR Framework
[29], described in 1994 by Wade and Braeckevelt, and IR-Base, presented
in 2007 by Calado et al. [14]. Unfortunately, in the case of IR-Base, the
authors do not provide high level of details about its design and it does not
exist a thorough study of how to use the system in teaching and research.
In fact, they have announced that the system is still under development.
Another difference among IR-Base, IR Framework and IR-Components is
that, whilst the first ones only provide a framework and a pool of compo-
nents which the programmer has to plug in order to create the applications,
the last one provides the components in a format that makes easier the
creation and execution of IR applications.

Independently of these educational goals, classroom materials (text
books, slides, problems, and so on) are another of the great needs of IR
teaching. Jones regretted that lack in his inquiry-based learning approach
[30]. He also noticed that feedback from students is another useful tool for
improving the goals of the subject. The approaches of Henrich and Morg-
enroth [18] and Sacchanand and Jaroenpuntaruk [31] could be appropriate

4 Rafael Lopez-Garcia, Fidel Cacheda

for some courses too. However, the methodology presented in this paper
tries to offer materials in the way of Croft et al. [7], but linking theoretical
and technical concepts in a bit different and stronger way.

The technical-oriented IR methodology

The multi-disciplinary nature of IR almost invariably causes LIS research-
ers to focus on abstract or high-level matters, delegating the technical or
low-level ones to computer scientists and engineers (e.g.: distributable sys-
tems, index compression techniques and so on). Hence, CS students have
to be able to analyze the abstract requirements and transform them into
programming code. The traditional way to make them familiarized with
this procedure is to include some laboratory classes where students often
have to program their own applications starting from an informal specifi-
cation. Nevertheless, this approach gives rise to a couple of problems. On
the one hand, a stronger association between theoretical concepts and pro-
gramming code is needed in order to make this transition easier. On the
other hand, students’ time and effort should not be wasted in programming
a complex and non-illustrative code in laboratory classes.

Another problem of the courses with a high level of technical detail is
the search or development of sample applications. Although there are a lot
of available and mature IR systems on the Internet, their code is often too
complex to be explained to students. It would be better for teachers to have
at their disposal a simpler custom system that illustrates the concepts at the
appropriate detail level. At this point, teachers have to choose between a
set of sample applications and a framework. Whilst the first alternative al-
lows users to test immediately how the code works, the second one helps
programmers to create or modify applications or components.

The problem of achieving a stronger linkage between theoretical con-
cepts and the final programming code can be solved by means of the inclu-
sion of the appropriate design diagrams and pieces of code in the course
notes or slides. Even when the pedagogic materials become harder to
maintain, this technique helps to create a better association between both
parts of the subject. Further more, if the diagrams and the pieces of code
are placed immediately after each theoretical concept or procedure, stu-
dents will obtain a first aid guideline to solve each problem.

The aforementioned election between sample applications or a frame-
work is especially interesting when the course notes or slides contain sam-
ple code. On the one hand, if students had at their disposal the complete
application from where the code was taken, they could easily verify how it

A Technical Approach to Information Retrieval Pedagogy 5

works. On the other hand, a framework could guide them in the correct de-
velopment of their coursework. Fortunately, it is possible to take advan-
tage of all those features at the same time by means of the combination of
both ideas, through a simple framework and a little set of implementations
from whose fusion the sample applications will result. That will allow the
teacher to choose either to provide the students only with the framework or
to give them the full sample applications.

With regard to the coursework, an alternative to the problem of develop-
ing an application or a component from scratch could be to provide the
students with a set of interfaces and a skeleton, making them develop the
rest of the code. The skeleton would cover all the non-illustrative parts of
the application or component they have to develop, whereas the guidelines
offered by the set of interfaces would force students to follow a standard in
the completion of the rest of the code. Orienting the framework to this
structure of skeletons and interfaces will make the coursework more inter-
esting for students.

Moreover, coursework evaluation could be easier for teachers too be-
cause following this approach students only have to implement a reduced
and concrete number of classes specified by their corresponding interfaces,
so their evaluation could also be reduced to a simple checklist about the
number, versatility and efficiency of the implementations programmed by
each student. The effectiveness of those modules would also become easy
to check, since teachers would only have to plug them in their skeleton in-
stead of their default implementations. Efficiency can also be checked by
adding measuring techniques in the appropriate points of the skeleton.

In short, the approach presented in this paper consists of two main parts.
The first one is helping to link theoretical concepts and software products,
generally by means of the inclusion of diagrams and sample code in the
course notes or slides and the second one is improving coursework selec-
tion, avoiding non-illustrative tasks in student’s coursework. In order to
follow this methodology, the teacher has to choose the right materials. A
good selection can help with both points and make the evaluation easier.

The IR-Components framework is presented in this article as the peda-
gogic tool that will fulfil the requirements of the explained approach, so
teachers will not have to create it from scratch. In addition, some of its fea-
tures, like its modularity, will make it valid for other tasks, like the quick
developing and testing of new IR techniques. Nevertheless, its educational
purpose does not make it appropriate as a commercial system or as high-
performing researching environment, capable of operating with large col-
lections of documents and queries like .GOV2 [32].

6 Rafael Lopez-Garcia, Fidel Cacheda

IR-Components

The IR-Components project' has been designed as an object-oriented
framework for developing IR applications. The entire software product has
been developed using only the J2SE API of the Java programming lan-
guage, XML files, the Apache log4j framework for log file generation [33]
and the JUnit framework for unit test generation [34], so a programmer can
read or modify all the code only knowing these four technologies. It is im-
portant to remark that the IR-Components project has been designed ac-
cording to several design patterns, most of them introduced in order to cre-
ate a robust and scalable architecture with pluggable components.

The IR-Components framework provides developers with a set of com-
ponents which will have to be interconnected to build IR applications. This
interconnection is a relatively easy task, since it only consists of one com-
ponent invoking at least one of the APIs provided by another component.
Internally, each of the components contains a pair of modules. On the one
hand, programmers have the “API module”, which offers them a set of in-
terfaces and it can also offer the skeleton of an algorithm. Some of the
aforesaid interfaces are APIs for externally invoking the functionalities of
the component, whilst the rest are facades for completing the internal tasks
delegated by the skeleton. On the other hand, they have the “implementa-
tion module”, which consists of several classes that implement all the in-
terfaces provided by the API module. The IR-Components project includes
a default implementation module for each API module, but programmers
could develop their own third-party implementations. The change of im-
plementation would be very easy, since they would only have to choose
their own classes in a configuration file. Figure 1 clarifies the structure of a
component and how they are interconnected.

COMPOMENT STRUCTURE COMPONENT INTERCONNECTION
=COmponents= E] MiniExample (Application)
— — — _E:Emﬂle(i:mp ==COmponent=:= L ==COmponent=»
| _C)Ck h FirstExampleComp APl 1|SecondExampleComp
N c=madules=> - S
ExampleAP _&_ o ==mocules=
|| taPI Module) Examplelmpl APIH

{Implementation

skeleton _O‘y - Module)

APIN ~_ _— _— _ _ _ _

Fig. 1. Component structure and interconnection

I Current URL: http://www.tic.udc.es/~rlopezga/ir-components/index.html. User:
“reviewer”. Password: “tlir2010”.

A Technical Approach to Information Retrieval Pedagogy 7

The naming convention used in this project is the following: applica-
tions are named according to the MiniXXX notation (e.g.: a searcher ap-
plication should be called MiniSearcher). Components, which are part of
applications, follow the XXXComp format (e.g.: a component containing
the search engine of a searcher application should be called SearchEngi-
neComp). Finally, for the modules that constitute a component, API mod-
ules follow the XXXAPI notation, whereas implementation modules are
named according to the XXXImpl format (e.g.: a component called
SearchEngineComp should be formed by the SearchEngineAPI and the
SearchEnginelmpl modules).

IR-Components could be used in at least three ways:

e To combine the provided components using their API and default
implementation modules in order to quickly create an IR application.

e To generate a new implementation module for at least one component in
order to change its behaviour. Then, the programmer should combine
the new component with others in order to create a different application.

e To use the source code of a certain component to explain how it works.

Whilst the first use of IR-Components does not have much relevance for
the CS staff, the second one is especially interesting for teachers who want
to provide their students with a starting point for the coursework. In this
case, it is recommended that a library be generated (e.g.: a jar file) with
each of the API modules of the components, and then provide students
with those libraries and their respective documentation in order to force
them to create their own components through the development of the re-
spective implementation modules. It is important to highlight that, as stu-
dents do not possess the sources of default implementation modules, re-
verse engineering is not possible for them. The second use of IR-
Components could also be interesting to programmers who want to quickly
develop and test their new techniques, expecting the new component to be
more efficient or versatile than the one generated using the default imple-
mentation. Finally, the third use could help teachers to explain with a
higher level of detail how a certain component works.

The project components are particularly oriented to build three applica-
tions, MiniCrawler, Minilndexer and MiniSearcher.

MiniCrawler is an implementation of the traditional web spider that uses
a single thread to perform a breadth-first traversal of the target website and
downloads the pages that match the specified file types, creating a data
structure that stores the main attributes of the file. It also has support for
the robots exclusion standard. The main educational objectives that have
been identified for MiniCrawler are the following:

8 Rafael Lopez-Garcia, Fidel Cacheda

o To illustrate the breadth-first traversal in the crawling algorithm.

e To know how to access a URL and how to save its content (simple text
file, compressed file or even by means of a database).

e To establish an access policy for URLs, taking into account several
factors like their content type, whether they belong to the crawled
website or not, whether they are excluded for robots or not and so on.

e To parse different kinds of files (plain text, HTML, XML and so on) in
order to get new URLSs to be accessed.

In order to achieve those aims, MiniCrawler only needs one component
called CrawlerComp. The API module of this component is mainly formed
by a skeleton (class Crawler) and some interfaces to which the skeleton
delegates the illustrative parts of the algorithm, expecting to be coded in
the respective implementation module. The diagram presented in Figure 2
shows this organization.

ecomponents =]
CrawlerComp

mocules
CrawlerAPI

[-

—
;7 9Rnhntsl:varsero

’—| TypeFilter (_Jk— — |
Crawter N smodule:
wses | JuRLMormalizer Oy | | [Crawleriml
| 1

| PageURLsParser ()
| i
PageURLsParserManager o

Fig. 2. Architecture of MiniCrawler and its components

The first educational objective is covered by all the classes in general,
but the skeleton provided by the class Crawler is the most important con-
tributor. The second objective is fulfilled by the RemoteAccess interface.
The third one is reached by means of the RobotsParser, TypeFilter, and
URLNormalizer interfaces, which provides methods to check the robot ex-
clusion standard, the content type of the URLs and its belonging to the
crawled website respectively. Finally, the fourth objective is covered by
the PageURLsParser interface and the PageURLsParserManager class,
which is a pool of PageURLsParser objects.

Each of those interfaces can be implemented following several strate-
gies. For example, a programmer can create an implementation of the
TypeFilter interface either based on the file extension (efficient but not
valid in every case) or the MIME type offered by an HTTP request (more

A Technical Approach to Information Retrieval Pedagogy 9

correct but inefficient). In the default implementation module, the devel-
opers chose a class based on the file extension.

The purpose of Minilndexer is to create a document index and a term
index for a document collection. The application has at its disposal differ-
ent ways to store the indexes in memory and on disk (plain text, Java seri-
alized objects and so on) and it also supports as many MIME types as
plug-and-play parsers are installed in the system (plain text, HTML and
XML documents by default). What is more, Minilndexer also supports
some other term processing advanced configurations, like the stop words
mechanism, the list of characters that have to be treated as separators (e.g.:
hyphen, plus sign, etc.) and the list of special characters that may be trans-
formed into others (e.g.: those which contain tilde, dieresis, etc.). The pri-
mary teaching goals that have been identified for Minilndexer are:

e To illustrate an indexing algorithm.

e To extract the tokens of various documents with different structures.

e To be conscious of the problems brought by some special characters that
should be normalized and some others that should act as separators.

e To determine which tokens are significant enough to be included in the
term index, generally by means of the stop words technique.

e To experiment with several data structures, file formats and loading and
storage techniques for the index.

The architecture and components of Minilndexer are shown in Figure 3.

Minilndexer <=Components: =y
TermProcessorCom
<<component==T]| > <<componeni=> £ P
IndexerComp TermindexManager IndexManager Comp <modulex>
T eO— TermProcessorAPI

\ DocumentindexManager .

PN CharacterNormalizer ()|

\ N |

\ - = —

N H(O)p——— =ccomponent> o]

A |
A Ter omp SeparatorCharacters)|, smadule=>
Vo D O TermProcessorimpl

\ SeparatorCharacters
\ stopwordsManager(J)| | |

CharacterNormalizer

<<component=> o)

<=component=> = IndexerComp

IndexManager Comp

==module==
<=modules> IndexerAPI
IndexManagerAPI

W PageTokensParser() 4 PE———
Termindexttanager Ol |
—

|

<uzens
| 0r

DocumentindexManagsr ()], <=modules=
f PageTokensParserManager

Fig. 3. Architecture of Minilndexer and its components

The component of Minilndexer that contains the skeleton of the index-
ing algorithm is IndexerComp. In order to improve extensibility, it de-
taches from the index format and operations, delegating this responsibility

10 Rafael Lopez-Garcia, Fidel Cacheda

to a component called IndexManagerComp, which decides the data struc-
tures to be used, the file format and the loading and storage strategies
(cache, etc.). The term processing techniques are also encapsulated in a
component called TermProcessorComp.

The API module of IndexerComp is principally formed by the afore-
mentioned skeleton (class Indexer) and some more classes and interfaces.
The skeleton delegates the illustrative parts of the algorithm to those
classes and interfaces and also to the other components that constitute the
Minilndexer application, covering the first educational aim. The PageTo-
kensParser interface and the PageTokensParserManager class, which acts
as a pool of PageTokensParser objects, are in charge of reaching the sec-
ond teaching goal of the application.

The second component, TermProcessorComp is only constituted by a
set of APIs for term processing and their respective implementations. It
lacks a template for an algorithm. The CharacterNormalizer and Separa-
torCharacters interfaces and their implementations are responsible for cov-
ering the third educational goal, whereas the StopwordsManager interface
is in charge of the fourth teaching aim.

Finally, the third component, IndexManagerComp, only provides a
mechanism of APIs and implementations for term and document index
managing (creation, update, lookup, load and storage). The DocumentIn-
dexManager and TermIndexManager interfaces and their respective im-
plementations fulfil the fifth pedagogic objective of Minilndexer.

The versatility of MiniSearcher lies in its capability of being configured
to act as a standalone search engine or as a broker of a distributed envi-
ronment in combination with multiple query server instances. In any case,
the application accepts multiple user interfaces (interactive console, batch
process and window interface); multiple weighting models and the same
term processing techniques as Minilndexer (stop words, separator charac-
ter configuration and so on). On the other hand, when MiniSearcher is act-
ing as a distributed environment, it supports broker hierarchy, asynchro-
nous result reception, several transport protocols (e.g.: TCP and UDP with
and without multicast), multiple types of data encoding to send the results
through the network, and multiple algorithms to get the best results at the
broker. The pedagogic objectives of MiniSearcher are the following:

e To illustrate the overall process of query solving in centralized and
distributed environments.

e To evaluate the usability of the different types of user interfaces.

e To study in depth the advantages and problems brought by normalized
characters, separator characters and stop words.

o To detail the functioning and features of the different weighting models.

A Technical Approach to Information Retrieval Pedagogy 11

e To implement a result sorting algorithm and to evaluate its performance.

e To implement the communications between brokers and query servers
and to learn the consequences of using different transport protocols.

e To investigate the advantages and disadvantages of the different
encodings for sending the data through the network.

e To know the problem of result selection in distributed environments.

The components of MiniSearcher have to be interconnected in different
ways depending on the scenario in which the application is running (stan-
dalone, distributed with a broker and some query servers or distributed
with a complete hierarchy of brokers and query servers). The simple
change of a parameter in a configuration file is sufficient to change from
one to another. Every scenario uses some more components than the pre-
vious one, so the standalone scenario where the user interface directly
connects the search engine is the simplest one. Figure 4 clarifies that archi-
tecture.

IMimSearcher - Standalone scenario

SearcherlUIComp

acormponent-- G|

<<component=> =]

SearcherlUIComp

<<component=>
SearchEngineComp

==componentss
— — — |SearchEngineComp

<<components>

SearchEngineAdapter

<=minduless
SearcherUIAPI

==module=s
SearchEngineAPI

B—Oc - - - 4

I

omp "

E—

DocumentindexManager

==componentss
TermProcessorComp

- T
StopwordsManager !

SeparatorCharacters

-4

} OHSEul il O

]
'3
i
|

==module=s
St herUllmpl
| Searchartiimpl

InteractiveConsoleUl
BatchConsoleUl

Mﬂdelo BﬂnleanMndeIO _
VEl:luriaIMudeIO
Prnhﬂhilistil:MndelO’q—

cemodules> | _ _ _ _ _
SearchEnginelmpl

Character

Fig. 4. Architecture of MiniSearcher in a standalone scenario

As some needs of MiniSearcher are the same as in other applications
above, the programmer can re-use some components from them. For ex-
ample, as a search engine needs to lookup the indices in order to solve the
queries, the IndexManagerComp used in Minilndexer is now re-used in
MiniSearcher. Other components like TermProcessorComp can also be re-
used, but as the term processing can be done in several places of the
searcher, the programmer must decide where it is going to be placed. This
is how the third pedagogic aim is covered.

The first new component is the user interface (SearcherUIComp), which
covers the second teaching goal of the application and provides an API for
the possible user interfaces and some classes that could be used in its im-
plementations. Most of those classes are graphical components, with the
exception of SearchEngineAdapter, that communicates the user interface
with the search engine. In order to prove that the API can be used by con-

12 Rafael Lopez-Garcia, Fidel Cacheda

sole user interfaces and graphical user interfaces, the default implementa-
tion of the module consists of an interactive console, a console that ex-
ecutes a batch process and a window environment.

The search engine is also independent from the rest of the application,
so it is confined in a component called SearchEngineComp. As it is shown
in Figure 4, the component has a set of interfaces for the different weight-
ing models supported by the engine (Model, BooleanModel, VectorialMo-
del and ProbabilisticModel). This way, the fourth teaching goal is covered.
There is another interface for result sorting (ResultSorter). Its implementa-
tions are responsible for covering the fifth teaching goal.

The second and third scenarios consist of a distributed architecture. Fig-
ure 5 presents a simple schema of both scenarios. In the second one, there
is only a root broker (RB) and a variable number of query servers (QS). In
the third one, there is a hierarchy composed of a root broker (RB), some
intermediate brokers (IB) and the query servers (QS) which are the leaf
nodes of the tree. Figure 6 studies the architecture of the third scenario,
since the second one is a particular case of the third without any IB.

ROOT BROKER AND QUERY BROKER HIERARCHY AND QUERY
SERVERS ARCHITECTURE SERVERS ARCHITECTURE

(ko)
@8 @9 @9

RB = ROOT BROKER
IB = INTERMEDIATE BROKER
QS = QUERY SERVER @ @

@y @9 @

Fig. 5. Distributed scenarios for MiniSearcher

MimSearcher - Distributed scenario <<componentss =
BrokerComp

<componert-] [—
SearcherUIComp <<camponert==og) BrokerAPl

—()= = — — | ErokerComp —0 IntermediateBroker(")
SearchEngineAdapte - |
T <<madule=»
NetworkManager) F

<<componert=> &) RootBroker
omp BrokerComp ~ SocketManager(Olq— | {
O IntermediateBroker
QueryServer ResultSelector(l, | |
=<componert==]
SearchEngineAdapter T T T T 7 [searchEngineComp P —— a3
coomparent=>] (e — — — — — _ _ 7 QueryServerComp
Comp | Ter ; [E—
- - - = = QueryServerAPI
DocumentindexManager
) QueryServer _
<=companents= (e ——— = — — — O O H
TermProcessorComp |StopwordsManager o [emr— | [=moduess
e ————-—=--"1 O | [aueryservertmpt
SeparatorCharacters !
¥ SocketManager(O)] ||
) — = — — — — — —
Character i

Fig. 6. Distributed scenarios for MiniSearcher

A Technical Approach to Information Retrieval Pedagogy 13

In order to develop both scenarios, two new components are needed:
BrokerComp and QueryServerComp.

BrokerComp provides another implementation of the SearchEngineA-
dapter facade from the SearcherUIComp when it acts as the root broker;
and it uses its own IntermediateBroker interface when it works as an in-
termediate broker. In both cases, the SocketManager, NetworkManager
and ResultSelector interfaces are in charge of developing the sixth, seventh
and eighth teaching goals respectively.

QueryServerComp offers an API (QueryServer interface) for component
invocation, and it also offers the SocketManager and NetworkManager in-
terfaces, which are responsible for reaching the sixth and seventh teaching
goals respectively from the query server’s side.

Assessment and feedback

The first time that Professor Fidel Cacheda taught a subject about IR at the
University of A Coruiia (Spain), it was in a master degree in the academic
year 2007-2008. Professor Cacheda and some other contributors related
their experience in [4]. Their methods were focused on the decomposition
of the different typical problems of IR and on the strategies to implement
the low-level solutions. They also enumerated some inconveniences of
their “Internet Information Retrieval” subject and its practical coursework.
As a solution to the problems, Cacheda proposed some “live-
programming” classes and the possibility to offer the students a basic im-
plementation of the subsystems that compose the coursework (crawler, in-
dexer and searcher) as a basic starting point.

For the next course, Cacheda changed the format of the practical
coursework, using the first version of IR-Components as the aforemen-
tioned starting point. In particular, the students were provided with a set of
binary libraries containing the API modules of the framework and they
were told to create all the corresponding implementation modules with the
exception of the searcher’s user interface and the distributed environment.
They also were given the documentation associated to those modules, so
their first task was learning how to use the libraries.

In order to compare both years’ results, students took an anonymous
opinion poll about the course. In basic outline, they had to give their opin-
ion about the difficulty of implementing each of the proposed components
and the contribution they entailed to the increase of their knowledge. In
addition, the poll also included some questions to assess the contribution
of using some other pedagogic resources (design diagrams, software

14 Rafael Lopez-Garcia, Fidel Cacheda

documentation, the coursework forum and so on). Some of the questions
consisted of rating something between 1 and 10 and some others asked for
an extended explanation. In both the 2007-2008 and 2008-2009 academic
years 7 students were called to answer the questions, but in both cases only
6 of them took part in the poll.

In the general section about the coursework, students had to rate the
workload and the difficulty. Numerical results are shown in Table 1.

Table 1. Coursework general results

Score ‘07-08 Score ‘08-09 Ratio of variances Significance
Workload 7.5 7.57 1.5906 >97%
Difficulty 6.7 6.43 1.7427 >99%

In the additional comments, one of the students asked for some more
techniques to be applied (e.g.: a ranking algorithm like HITS or Page-
Rank). Another student suggested starting the coursework with some parts
already implemented, alleging that they were too tedious to be imple-
mented by the students and their contribution to his/her knowledge was in-
sufficient. Nevertheless, a third one suggested exactly the opposite, in
other words, that all the coursework was interesting and it should be man-
datory to implement the three applications from scratch. A fourth student
compared the workload of making the applications in Python and in Java,
and he suggested that it is easier to implement them in the first program-
ming language.

Even though the global rates did not change significantly for the second
year, everybody agreed that having the IR-Components APIs as a starting
point is clearly an advantage. The main reason given by the students was
that they avoided a lot of tedious work. Unnecessary complexity was re-
moved and the students could concentrate on the most important parts of
the engine. Most of them also agreed that the main inconvenience of this
kind of coursework is that some parts of the software act as a black box,
making it more difficult to understand in the beginning, but they also clari-
fied that the design diagrams and the documentation are sufficient to over-
come this initial problem. In addition, every student of the second course
declared that the workload is sufficient, but 5 out of 6 affirmed that a Pag-
eRank module could be a good extra exercise for the next course since it is
historically important in IR and it is the only part of the theoretical con-
tents that had not been reflected on the practical coursework.

Regarding the different resources offered to the students, in both aca-
demic years everybody agreed that the forum is convenient for sharing
some information about the development of the applications. However,

A Technical Approach to Information Retrieval Pedagogy 15

they also agreed that personal attention is also necessary in some cases, es-
pecially for the students of second year whose interaction with an un-
known API makes them more prone to technical problems. The acceptance
of some other resources was remarkable too. Some of these materials, such
as hints to help students to solve some programming problems, were avail-
able in both years, whilst the others, programming documentation and de-
sign diagrams, were only available to the second year of students. Numeric
results are shown in Table 2:

Table 2. Statistics about teaching resources

Resource 2007-2008 2008-2009
Forum 7.67 8.57
Hints 8.6 9.57
Programming documentation N/A 9.33
Design diagrams N/A 9.33

In spite of the fact that there were only seven students in each promo-
tion, four thorough statistical tests were made in order to analyze the aver-
age and the variance of the difficulty of implementing each feature and the
contribution that they entailed to the knowledge of the students. Unfortu-
nately, the lack of a sufficient number of samples determines that no con-
clusion can be reached when the average of the different factors is studied.

More interesting conclusions can be reached when the variance is stud-
ied. Table 1 shows the ratio of variances for the difficulty and the contribu-
tion of the coursework in both groups. As in both cases the variance is sig-
nificantly smaller for the second year and the analysis of the p-value also
shows a high degree of certainty for this hypothesis, the first conclusion
extracted from the statistical study is that the application of the new meth-
odology reduces the number of students who think that the coursework is
too difficult or easy, or that it contributes a lot or nothing at all to their
knowledge. Even when decreasing the third of the four groups too is a bad
partial result, the combination of the previously presented methodology
and materials constitute an improvement in the subject.

On the teachers’ side, the opinion is quite different. In small and me-
dium scale projects like this, working with new APIs and continuing other
people’s work is more difficult than starting a project right from scratch, so
coursework in the second academic year was harder. However, the diffi-
culty did not change significantly in the poll. Also, the number of ques-
tions asked by the students was significantly bigger during the second
year, so the teachers think that the students were more interested in the
second year’s coursework and this helped them to overcome difficulty.

16 Rafael Lopez-Garcia, Fidel Cacheda

Conclusions and future work

This paper has presented a technical approach to teaching IR which could
result interesting mainly for teachers belonging to the CS curricula. As the
global idea lies on helping students to make the transition from theoretical
concepts and specifications to final software products, this methodology is
based on a strong linkage between theoretical contents and programming
code, not reducing its utilization to laboratory classes and practical
coursework, but including it in the classroom materials (notes, slides and
so on). In addition, this methodology also focuses on other problems like
the coursework evaluation and the difficult choice of sample applications,
since there is a lack of appropriate materials.

This article has also submitted IR-Components, a multi-module object-
oriented software product which combines the ideas of an IR framework
and the common IR sample applications. The project has been studied in
depth in order to show how several pedagogic objectives of IR subjects
could be fulfilled by means of its use. Moreover, this project could be use-
ful not only for teachers, but also for programmers who are in need of a
simple starting point to test their new techniques and algorithms.

This article has also evaluated the difference between using and not us-
ing the aforementioned methodology and materials. To that end, the stu-
dents of two years of a post-graduate Internet Information Retrieval class
took an anonymous opinion poll. The results given by the students suggest
three interesting conclusions. First of all, the availability of a wide range of
resources (discussion forum, programming documentation, design dia-
grams, source code) and their integration with theoretical concepts is really
useful to improve students’ interest and understanding. These resources are
really necessary for the development of their coursework. Secondly, the
availability of an IR framework as a starting point for students’ course-
work helps them to avoid tedious and non-illustrative parts of the course-
work and it also guides them to the correct design of IR applications. Fi-
nally, the approach described in this paper significantly reduces the
variability of their opinions about the difficulty and the contribution of the
coursework. Hence, the number of students who think that the coursework
is too difficult or easy or that it makes too big or to small contribution to
their knowledge is reduced.

On the teacher’s side, the usage of IR-Components makes easier to
evaluate students’ work, since they have only to check which of the pro-
posed functionalities were implemented and how they were programmed.

However, it is clear that the full fruition of this methodology will be
reached only after several years of application, so it will be necessary to

A Technical Approach to Information Retrieval Pedagogy 17

continue improving and adapting it, generally by means of the feedback
submitted by teachers, students and researchers. The immediate future
work of the general approach is, mainly, to improve the way of linking
theoretical concepts and the final programming code. This will mean more
experiments in this respect and a more thorough monitoring in student’s
learning process.

Regarding to IR-Components project, two different paths will be fol-
lowed in the future. The first one will consist of adding new features to the
framework with two aims in mind: to include some IR concepts which can
be interesting for students and to make IR-Components become not only
an educational framework, but also a research tool. As a first step, the next
versions will include the IR concepts that the students suggested in the
opinion poll (e.g.: PageRank), some other interesting ones (e.g.: query ex-
pansion, stemming, more weighting models, etc.) and some wrappers for a
few research engines, like MG4J [35] and Terrier [13].

The other path to follow is to research a way to extend IR-Components
in order to help teachers and students of other branches (e.g.: LIS). The
application resulting from this extension would consist of a canvas where
the user could create a search engine without editing a single line of pro-
gramming code, but simply dropping and interconnecting some visual rep-
resentations of several parts of IR-Components. This would allow students
of non-technical branches of IR to be introduced in the technical concepts
at a level of abstraction appropriate for their particular studies.

Acknowledgements

This work was partially supported by the Spanish Government under pro-
ject TIN 2009-14203, the European Social Fund and the Direccion Xeral
de Ordenacioén e Calidade do Sistema Universitario de Galicia of the Con-
selleria de Educacion e Ordenacién Universitaria - Xunta de Galicia
(Spain).

We would also like to thank Professor Fernando Bellas for his educa-
tional guidance on the architecture of IR-Components.

References

1. The joint task force on computer curricula IEEE-CS & ACM (2001, 2005)
Computing curricula 2001 and Computing curricula 2005. Computer science.
http://www.acm.org/education/curricula-recommendations

18 Rafael Lopez-Garcia, Fidel Cacheda

2. Ruthven 1, Elsweiler D and Nicol E (2008) Designing for users: A holistic ap-
proach to teaching information retrieval. In: Proc. of the 2™ international
workshop on teaching and learning of information retrieval.
http://www.bcs.org/server.php?show=ConWebDoc.22356

3. Thornley C (2008) Teaching information retrieval (IR) as a philosophical prob-
lem. In: Proc. of the 2" international workshop on teaching and learning of in-
formation retrieval. http://www.bcs.org/server.php?show=ConWebDoc.22354

4. Cacheda F, Fernandez D and Lopez R (2008) Experiences on a practical course
of web information retrieval: Developing a search engine. In: Proc. of the 2™
international workshop on teaching and learning of information retrieval.
http://www.bcs.org/server.php?show=ConWebDoc.22357

5. Robertson SE, Sparck Jones K (1997) Simple, proven approaches to text re-
trieval. Cambridge Technical Report.
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-356.pdf

6. Manning CD, Raghavan D and Schiitze H (2008) Introduction to Information
Retrieval. Cambridge University Press.

7. Croft B, Metzer D and Strohman T (2009) Search Engines: Information Re-
trieval in Practice. Addison Wesley.

8. Freed N, Borenstein N (1996) Multipurpose Internet Mail Extensions (MIME)
Part One: Format of Internet Message Bodies. RFC 2045, 31 pages.
http://www.ietf org/rfc/rfc2045.txt

9. Koster MA Standard for Robot Exclusion. http://www.robotstxt.org/orig.html

10. Porter MF (1980) An algorithm for suffix stripping. In: Program, vol. 14, no. 3
pp. 130-137. http://tartarus.org/~martin/PorterStemmer/def. txt

11. Zobel J, Moffat A (1998) Exploring the similarity space. In: SIGIR Forum.

12. Apache Lucene: http://lucene.apache.org/

13. TERabyte RetrIEveR: http://ir.dcs.gla.ac.uk/terrier/

14. Calado P, Cardoso-Cachopo A, Oliveira A (2007). IR-BASE: An integrated
framework for the research and teaching of information retrieval technologies.
In: Proc. of the 1% international workshop on teaching and learning of infor-
mation retrieval. http://portal.acm.org/citation.cfm?id=1181901.1181949

15. Mooers CN (1951) Making information retrieval pay. In Boston: Zator Co.

16. Zhu L, Tang C (2006) A module-based integration of Information Retrieval
into undergraduate curricula. In: Journal of Computing Sciences in Colleges,
vol. 22, no. 2, pp. 288-294.
http://portal.acm.org/citation.cfm?id=1181901.1181949

17. Fernandez-Luna JM, Huete JF, MacFarlane A, Efthimiadis EN (2009) Teach-
ing and Learning in Information Retrieval. In: Information Retrieval.
http://www.springerlink.com/content/drx6741t28k71612/fulltext.pdf

18. Henrich A, Morgenroth K (2007) Information retrieval as e-learning course in
German—Lessons learned after 5 years of experience. In: Proc. of the 1¥ in-
ternational workshop on teaching and learning of information retrieval.
http://www.bcs.org/server.php?show=ConWebDoc.8765

19. Efthimiadis EN and Hendry DG (2005) Search engines and how students think
they work. In: Proc. of the SIGIR conference. pp. 595-596.
http://portal.acm.org/citation.cfm?id=1076034.1076145

A Technical Approach to Information Retrieval Pedagogy 19

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.
34.
35.

Hendry DG and Efthimiadis EN (2008) Conceptual models for search engines.
In: Spink A, Zimmer M (Eds.), Web searching: Interdisciplinary perspectives.
Springer. pp. 277-307.

Herrera-Viedma E, Alonso S, Cabrerizo FJ, Lopez-Herrera AG, Porcel C
(2007) A software tool to teach the performance of fuzzy IR systems based on
weighted queries. In: Proc. of the 1% international workshop on teaching and
learning of information retrieval.
http://www.bcs.org/server.php?show=ConWebDoc.8767

Goharian N, Grossman D, Raju N (2004) Extending the undergraduate com-
puter science curriculum to include data mining. In: Proc. of the international
conference on information technology: Coding and computing (ITCC’04) pp.
251-254.

Johnson F (2008) On the relation of search and engines. In: Proc. of the 2™ in-
ternational workshop on teaching and learning of information retrieval.
http://www.bcs.org/server.php?show=ConWebDoc.22355

Airio E, Sormunen E, Halttunen K, Keskustalo H (2007) Integrating standard
test collections in interactive IR instruction. In: Proc. of the 1st international
workshop on teaching and learning of information retrieval.
http://www.bcs.org/server.php?show=ConWebDoc.8783

Efthimiadis EN, Freier NG (2007) IR-Toolbox: An experiential learning tool
for teaching IR. In: Proc. of the SIGIR conference (p. 914).

Jinguji D, Lewis W, Efthimiadis EN, Minor J, Bertram A, et al. (2006) The
University of Washington’s U WCLMA QA system. In: The 15" Text RE-
trieval Conference (TREC 2006) proceedings.

De Campos LM, Fernandez-Luna JM, Huete JF, Romero AE (2007) A flexible
object-oriented system for teaching and learning structured IR. In: Proc. of the
1*" international workshop on teaching and learning of information retrieval.
http://www.bcs.org/server.php?show=ConWebDoc.8769

Chau M, Huang Z, Chen H (2003) Teaching key topics in computer science
and information systems through a web search engine project. In: ACM Jour-
nal of Educational Resources in Computing, vol. 3, no. 3, article 2.
http://portal.acm.org/citation.cfm?doid=1029994.1029996

Wade S, Brackevelt P (1994) IR framework: An object-oriented framework
for developing information retrieval systems. In: Program-Automated Library
and Information Systems, vol. 29 no.1, pp. 15-29.

Jones GJF (2009) An inquiry-based learning approach to teaching information
retrieval. In: Information Retrieval, vol. 12, no. 2, pp. 148-161.
http://www.springerlink.com/content/kh60168006p30x63/fulltext.pdf
Sacchanand C, Jaroenpuntaruk V (2006) Development of a web-based self-
training package for information retrieval using the distance education ap-
proach. In: The Electronic Library, vol. 24, no. 4, pp. 501-516.

.GOV2 collection: http://ir.dcs.gla.ac.uk/test_collections/gov2-summary.htm
Apache log4j: http://logging.apache.org/log4j

JUnit: http:/www.junit.org/

Managing Gigabytes for Java (MG4J): http://mg4j.dsi.unimi.it/

