
Architecture for a Garbage-less and Fresh Content Search Engine

Vı́ctor M. Prieto, Manuel Álvarez, Rafael López Garcı́a and Fidel Cacheda
Department of Information and Communication Technologies, University of A Coruña, A Coruña, Spain

{victor.prieto, manuel.alvarez, rafael.lopez@udc.es, fidel.cacheda}@udc.es

Keywords: Web Crawling, Web Spam, Soft-404, Crawling Refresh, Crawling Performance, Crawling Architecture

Abstract: This paper presents the architecture of a Web search engine that integrates solutions for several state-of-the-
art problems, such as Web Spam and Soft-404 detection, content update and resource use. To this end, the
system incorporates a Web Spam detection module that is based on techniques that have been presented in
previous works and whose success have been assessed in well-known public datasets. For the Soft-404 pages
we propose some new techniques that improve the ones described in the state of the art. Finally, a last module
allows the search engine to detect when a page has changed considering the user interaction. The tests we
have performed allow us to conclude that, with the architecture we propose, it is possible to achieve important
improvements in the efficacy and the efficiency of crawling systems. This has repercussions in the content that
is provided to the users.

1 INTRODUCTION

Currently, the WWW is the biggest information
repository ever built, and it is continuously growing.
Due to its big size, it is indispensable to use search
engines to access the information which is relevant to
the user.

A search engine faces many challenges because
of the quantity, the variability and the quality of the
information that it has to gather. Among others, we
can highlight: server/client side technologies (Ragha-
van and Garcia-Molina, 2001) (Bergman, 2000), Web
Spam (Gyongyi and Garcia-Molina, 2004) (Fetterly
et al., 2004), Soft-404 pages (Bar-Yossef et al., 2004)
which are those that return a 200 OK HTTP code in-
stead of a 404 one, with or without content, repeated
content (Kumar and Govindarajulu, 2009), content
refresh (Brewington and Cybenko, 2000) (Cho and
Garcia-Molina, 2003), bad quality content, etc. These
challenges can be summarized in one: processing the
biggest number of web documents of the best qual-
ity, using the lowest quantity of resources and in the
shortest time.

There are studies that try to improve the perfor-
mance of the search engines and their crawling sys-
tems by proposing different types of architectures,
and trying to reduce the resources that are necessary
in certain tasks such as disk access or URL caching.
However, to the best of our knowledge, there is not
a paper that proposes a global search engine archi-

tecture that improves the performance by focusing on
avoiding processing those pages whose content is not
appropriate to be indexed and by optimizing the re-
fresh time of pages with relevant content. Accord-
ing to Ntoulas et al. (Ntoulas and Manasse, 2006),
70% of the pages of the .biz domain are Spam, and
the same happens with 20% of .com and 15% of .net.
Moreover, considering our own studies that make ran-
dom requests to existing domains, we have stated that
7.35% of the web servers return a Soft-404 page when
a request to an unknown resource is made.

If these “garbage” pages can be detected, we can
protect both the users, who are wasting their time and
money, and also the companies that develop search
engines. The latters are very affected, since they do
not only lose prestige when they show Spam among
the results, but they are also wasting resources, and
therefore money, in analysing, indexing and showing
pages that should not be shown. Not protecting any
of these parties means an economic loss.

We have also stated that, for domains whose Page
Rank is between 0 and 3, Google has not been up to
date 60.42% of the times, Yahoo! 70.93% and Bing
66.40%. For domains with PageRank between 3 and
6, Google has been out of date 50.52% of the times,
Yahoo! 72% and Bing 70.17%.

This paper presents the architecture of a search en-
gine whose processes are optimised to avoid irrele-
vant pages and to refresh the contents in the most ap-
propriate moment. This will minimise unnecessary

refreshing at the same time as their level of obso-
lescence. For that purpose, the system incorporates
a module for detecting “garbage” pages (Spam and
Soft-404) and a module for detecting changes which
focuses on user accesses, using a collaborative archi-
tecture.

This architecture includes the Spam and Soft-404
detection techniques published by Prieto et al. (Prieto
et al., 2012). We also propose a system to detect “real-
time” changes in Web pages too. This, along with the
refreshing policies (in which current search engines
are based), will improve significantly the update of
web resources in the search engine.

2 ARCHITECTURE OF THE
SEARCH ENGINE

Figure 1 shows the architecture we propose for a
search engine, along with the modules for detecting
web “garbage” and for detecting modifications in the
pages. In an introductory overview of the system, we
can appreciate that the search engine consists of the
following elements:

• Crawling Module: it consists of a group of
crawlers that are in charge of traversing the Web
and creating a repository with the contents found.

• Repository: set of downloaded pages.

• Updating Module: its objective is to keep the
repository up to date. This module communicates
with the modification detection system that is ex-
plained in section 2.2.

• Indexing Module: it is responsible for extract-
ing the keywords of each page and for associating
them the URLs the system has found.

• Index: it represents the set of indices that have
been generated by the indexing module. These
indices will be used to solve the queries sent by
the user.

• Query Manager: its mission is to process the
queries and to return those documents that are rel-
evant for them.

• Ranking Module: it is in charge of sorting the re-
sults the Query Manager has returned according
to the relevance of the documents.

Focusing on the architecture of the crawling mo-
dule, we can highlight the following modules:

• Document Controller: it is in charge of control-
ling that the content of a web document is not re-
peated or it is not very similar to others. In this
case it should not be processed and indexed again.

• Garbage detector: it is in charge of detecting
Spam and Soft-404 pages. It will be explained
in section 2.1.

• URL extractor and validator: it is responsible for
processing the content of each page and the ex-
traction of new valid links.

• Visited URL Controller: its mission consists in
checking if a URL has already been processed.

• Robot.txt Analyser: following the robots ex-
clusion protocol, this module determines which
pages must be indexed and/or visited.

2.1 GARBAGE DETECTION
MODULE

The garbage detection module has the goal of de-
tecting both Web Spam and Soft-404 pages in or-
der to avoid their processing and indexing. It is
based on decision tree algorithms that use as input
the result of applying different heuristics that try to
partially characterize both Web Spam and Soft-404
pages. Regarding Web Spam, in contradistinction to
other approaches in the literature, this module is de-
signed to detect all kinds of Web Spam: Cloaking (Wu
and Davison, 2005a), Link Farm (Wu and Davison,
2005b), Redirection Spam (Chellapilla and Maykov,
2007) and Content Spam (Fetterly et al., 2005). It is
based in the techniques introduced in (Prieto et al.,
2012). Regarding Soft-404 pages, this module de-
tects parking pages as well as pages that notify 404
errors, but whose web server does not send the corre-
sponding HTTP code. This allows the system to use
fewer resources than the used by other algorithms in
the literature, which send several random requests to
the domain in order to check the differences between
the normal pages and the Soft-404 pages.

This module uses C4.5 (Quinlan, 1996) as the
decision tree algorithm, along with “bagging” and
“boosting” techniques to improve the results. The
system contains a set of decision trees to detect Web
Spam and another one for Soft-404 pages, with each
tree corresponding to a configuration that employs
more or less resources (maximizing the detection or
the performance respectively). The process of this
module for each new page is the following:

• The Content Analyser extracts the results of each
heuristic.

• The System Configurator chooses the decision
trees that will be used in each case. This elec-
tion depends on the detection level that has been
previously configured and the resources that are
available for the detection module of that level.

Crawling Module

Indexing
Module

robots.txt Analyser

Visited URL Controller

URL Extractor and Validator

Garbage Detector

Crawler

Crawler Frontier

Searching Module

Document Controller

Search
Manager

Ranking
Module

WWW

Updating
Module

Repository Index

Content
Analyser

System
Configurator

Web Spam
Decision

Tree

Soft-404
Decision

Tree

Web Spam and Soft-404 Analyser Process

Supervised
Result

Analyser

Web Spam
Soft-404

Repository

Web Spam
Soft-404
Metadata

Web Modification
Detection
Module

Web Modification
Detector

Repository

Request
Processor

Web
Modification

Detector

 Query

Results

J
S

 R
e
q
u
e
s
t

J
S

 C
o
d
e

Figure 1: Architecture proposed for a Search Engine and its Crawling System

• Depending on the results obtained by the heuris-
tics we have applied, the Web Spam and Soft-404
decision trees will establish the type of page.

• If the page is considered Spam or Soft-404, its
processing is stopped and the domain will be
stored in the Spam and Soft-404 Repository,
which will be queried by the URL Validator. If
any link points to a Spam domain the page will
be discarded. If the link is part of a domain that
returns Soft-404 pages, this page must be marked
as “possible” Soft-404 and analysed later.

• Supervised Result Analyser allows recalculating
the decision tree from time to time in order to im-
prove the quality of the detection. Feedback is
received by means of manual labelling of Spam
pages.

Finally, this module communicates with the Doc-
ument Controller, since the first step in the Garbage
Detection Module consists in knowing whether a doc-
ument has already been processed or whether it has
already been detected as Spam or Soft-404.

2.2 WEB MODIFICATION
DETECTION MODULE

This section describes the architecture of the module
we propose to improve the information about mod-
ifications employed by the Updating Module of the
search engine. This module is based on a collabora-
tive architecture similar to the one used in “Google
Analytics”1 for obtaining data from the client that ac-
cesses a page. In our case, the navigation of a user
through a web resource is used as a changes notifi-
cation agent. This module is shown on the right side

1http://www.google.com/analytics/

of Figure 1. The creator of a web site should embed
a little JavaScript code in the pages that wish a “real
time” updating by the search engines.

Due to the JavaScript code that has been embed-
ded in the pages, for each request of a user, the “Re-
quest Processor” will check in the repository the last
date which contains information about that page. If
the information is new enough, we will not send the
JavaScript code, so the client’s browser will not send
anything to the server. Otherwise, the code we send
will make a MD5 summary of several parts of the
page and it will send it to the web modification de-
tection module, which will queue the request. Fi-
nally, the “Web Modification Detector” will traverse
the queues of pending operations, choosing the most
updated information and updating the repository.

The system we have designed is highly scalable
since a big part of the processing is done in the users’
web browsers. Moreover, in situations of high load
or attacks against our system (DDOS - Distributed
Denial of Service), the module will not send the
JavaScript, and, in case that the load is big enough to
affect the system for a long time, the system will wait,
not receiving information for that period of time, but
not affecting the final user either.

The Updating Module queries the Web Modifi-
cation Detection Module to know what pages have
changed. Then, the latter decides whether to re-crawl
the page by considering other data (relevance, fre-
quency of change, type of page, etc.).

Current re-crawling policies consist in polling
web sites more or less frequently to detect changes.
This approach has two problems: (1) visiting pages
that have changed, which implies wasting resources,
and (2) not having the repositories up to date at “real
time”. However, in our approach the crawler is indi-
cated when a page has changed, so our repository will

be more updated, with the consequential improve-
ment of the quality of the indices that the search en-
gines are using. The system will also improve perfor-
mance use since resources will only be used when it
is necessary.

3 DISCUSSION

According to some studies existing in the litera-
ture and others we have performed, we have observed
that Spam and Soft-404 pages represent 27.35% of
the content of the .com domain. In addition, we have
checked that the resources a search engine has in-
dexed are obsolete more than 50% of the time, which
affects to the quality of the results, too.

In the literature, there are not any search en-
gine architecture that improve their performance and
the quality of their results by detecting and ignoring
“garbage” content, and therefore, reducing the num-
ber of used resources. The architecture of the web
search engine we have proposed in this paper con-
tains a module that is in charge of detecting the web
“garbage”, to improve the quality of the pages we in-
dex and process. Furthermore, a module for detecting
modifications provides the system with information
about the changes in the pages when the users navi-
gate through a site, which helps to improve the re-
fresh policies. The results we have obtained point out
that a crawler that uses the Web Spam detection mo-
dule and the Soft-404 detection module would avoid
processing 22.37% of the resources in the worst case
and 26.62% in the best one, which is the practical
totality of the aforementioned 27.35% of “garbage
pages”. What is more, the modification detection mo-
dule would allow the search engine to know the exact
change moment, not wasting resources in returning to
a page that has not changed and allowing the system
to decide the best moment to re-crawl it.

Our future work consists in developing this archi-
tecture completely and assessing it in real environ-
ments. In parallel, we will develop the modules for
a distributed architecture.

ACKNOWLEDGEMENTS

This work was supported by the Spanish govern-
ment (TIN 2009-14203).

REFERENCES

Bar-Yossef, Z., Broder, A. Z., Kumar, R., and Tomkins, A.
(2004). Sic transit gloria telae: towards an understand-
ing of the web’s decay. In Proceedings of the 13th
international conference on World Wide Web, WWW
’04, pages 328–337, New York, NY, USA. ACM.

Bergman, M. K. (2000). The deep web: Surfacing hidden
value.

Brewington, B. and Cybenko, G. (2000). How dynamic is
the web? pages 257–276.

Chellapilla, K. and Maykov, A. (2007). A taxonomy of
javascript redirection spam. In Proceedings of the
3rd international workshop on Adversarial informa-
tion retrieval on the web, AIRWeb ’07, pages 81–88,
New York, NY, USA. ACM.

Cho, J. and Garcia-Molina, H. (2003). Estimating fre-
quency of change. ACM Trans. Internet Technol.,
3:256–290.

Fetterly, D., Manasse, M., and Najork, M. (2004). Spam,
damn spam, and statistics: using statistical analysis
to locate spam web pages. In Proceedings of the 7th
International Workshop on the Web and Databases:
colocated with ACM SIGMOD/PODS 2004, WebDB
’04, pages 1–6, New York, NY, USA. ACM.

Fetterly, D., Manasse, M., and Najork, M. (2005). Detect-
ing phrase-level duplication on the world wide web. In
In Proceedings of the 28th Annual International ACM
SIGIR Conference on Research & Development in In-
formation Retrieval, pages 170–177. ACM Press.

Gyongyi, Z. and Garcia-Molina, H. (2004). Web spam tax-
onomy. Technical Report 2004-25, Stanford InfoLab.

Kumar, J. P. and Govindarajulu, P. (2009). Duplicate and
near duplicate documents detection: A review. Euro-
pean Journal of Scientific Research, 32:514–527.

Ntoulas, A. and Manasse, M. (2006). Detecting spam web
pages through content analysis. In In Proceedings of
the World Wide Web conference, pages 83–92. ACM
Press.

Prieto, V. M., Álvarez, M., and Cacheda, F. (2012). Analy-
sis and detection of web spam by means of web con-
tent. In Proceedings of the 5th Information Retrieval
Facility Conference, IRFC ’12.

Quinlan, J. R. (1996). Bagging, boosting, and c4.5. In In
Proceedings of the Thirteenth National Conference on
Artificial Intelligence, pages 725–730. AAAI Press.

Raghavan, S. and Garcia-Molina, H. (2001). Crawling the
hidden web. In Proceedings of the 27th International
Conference on Very Large Data Bases, VLDB ’01,
pages 129–138, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc.

Wu, B. and Davison, B. D. (2005a). Cloaking and redirec-
tion: A preliminary study.

Wu, B. and Davison, B. D. (2005b). Identifying link farm
spam pages. In Special interest tracks and posters of
the 14th international conference on World Wide Web,
WWW ’05, pages 820–829, New York, NY, USA.
ACM.

